The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  1  1  1  2  2  2  2  1  2  2  2  1  1  1  1  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1
 0 2X  0  0  0 2X 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0 2X 2X  0 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0 2X 2X  0 2X 2X  0  0  0 2X 2X 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0  0 2X 2X  0 2X 2X  0  0  0  0 2X  0 2X 2X  0
 0  0 2X  0 2X 2X 2X  0  0  0 2X 2X 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0  0 2X 2X  0 2X 2X  0  0  0 2X 2X 2X 2X  0  0  0 2X 2X  0 2X 2X  0  0  0 2X 2X 2X  0  0 2X  0 2X 2X 2X 2X  0  0  0  0 2X 2X  0 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0
 0  0  0 2X 2X  0 2X 2X  0 2X 2X  0  0 2X 2X  0  0 2X 2X  0  0 2X 2X  0 2X 2X  0  0  0 2X 2X  0 2X 2X  0  0 2X 2X  0 2X 2X  0  0  0 2X 2X  0 2X 2X  0 2X 2X  0  0 2X 2X  0  0 2X 2X  0  0 2X 2X  0  0  0 2X 2X  0  0 2X 2X  0  0 2X 2X  0

generates a code of length 78 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 77.

Homogenous weight enumerator: w(x)=1x^0+28x^77+82x^78+6x^80+4x^82+4x^85+2x^94+1x^96

The gray image is a code over GF(2) with n=624, k=7 and d=308.
This code was found by Heurico 1.16 in 0.297 seconds.